IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Optical remote sensing of coastal waters from geostationary platforms: a feasibility study - Mapping Total Suspended Matter with SEVIRI
Neukermans, G.; Nechad, B.; Ruddick, K. (2008). Optical remote sensing of coastal waters from geostationary platforms: a feasibility study - Mapping Total Suspended Matter with SEVIRI, in: Proceedings Ocean Optics XIX, 6-10 October 2008, Barga. pp. 14
In: (2008). Proceedings Ocean Optics XIX, 6-10 October 2008, Barga. Oceanography Society: [s.l.]. , more

Available in  Authors 
Document type: Conference paper

Keyword
    Marine/Coastal

Project Top | Authors 
  • BELCOLOUR-2 : Optical remote sensing of marine, coastal and inland waters, more

Authors  Top 

Abstract
    Geostationary ocean colour sensors do not yet exist, but are under consideration by a number of space agencies. This study tests the feasibility and assesses the potential for optical remote sensing of coastal waters from geostationary platforms, with the existing SEVIRI (Spinning Enhanced Visible and InfraRed Imager) meteorological sensor on the METOSAT Second Generation platform. Data are available in near real time every 15 minutes. SEVIRI lacks sufficient bands for chlorophyll remote sensing but its spectral resolution is sufficient for quantification of Total Suspended Matter (TSM) in turbid waters, using a single broad red band, combined with a suitable near infrared band. A test data set for mapping of TSM was obtained from the SEVIRI Archive of the Royal Meteorological Institute of Belgium (RMIB), covering 15 consecutive days in September 2006 for the Southern North Sea. Atmospheric correction of SEVIRI images included corrections for Rayleigh and aerosol scattering, ozone absorption and atmospheric transmittances. A one-band TSM retrieval algorithm, calibrated by non-linear regression of seaborne measurements of TSM and water-leaving reflectance was applied. Results show that (1) mapping of TSM in the Southern North Sea is feasible with SEVIRI and that TSM maps are well correlated with TSM maps obtained from MODIS (2) during cloud-free days, high frequency dynamics of TSM are detected and (3) daily composites of TSM could be generated in partially cloudy weather.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors