IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [239896]
Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations
Deplazes, G.; Lückge, A.; Stuut, J.-B.; Pätzold, J.; Kuhlmann, H.; Husson, D.; Fant, M.; Haug, G.H. (2014). Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations. Paleoceanography 29(2): 99-114. dx.doi.org/10.1002/2013PA002509
In: Paleoceanography. American Geophysical Union: Washington, DC. ISSN 0883-8305; e-ISSN 1944-9186, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Indian Monsoon; Arabian Sea; XRF; Dansgaard-Oeschger oscillations;Heinrich events; Sediment Transport

Authors  Top 
  • Deplazes, G.
  • Lückge, A.
  • Stuut, J.-B., more
  • Pätzold, J.
  • Kuhlmann, H.
  • Husson, D.
  • Fant, M.
  • Haug, G.H.

Abstract
    The Dansgaard-Oeschger oscillations and Heinrich events described in North Atlantic sediments and Greenland ice are expressed in the climate of the tropics, for example, as documented in Arabian Sea sediments. Given the strength of this teleconnection, we seek to reconstruct its range of environmental impacts. We present geochemical and sedimentological data from core SO130-289KL from the Indus submarine slope spanning the last similar to 80 kyr. Elemental and grain size analyses consistently indicate that interstadials are characterized by an increased contribution of fluvial suspension from the Indus River. In contrast, stadials are characterized by an increased contribution of aeolian dust from the Arabian Peninsula. Decadal-scale shifts at climate transitions, such as onsets of interstadials, were coeval with changes in productivity-related proxies. Heinrich events stand out as especially dry and dusty events, indicating a dramatically weakened Indian summer monsoon, potentially increased winter monsoon circulation, and increased aridity on the Arabian Peninsula. This finding is consistent with other paleoclimate evidence for continental aridity in the northern tropics during these events. Our results strengthen the evidence that circum-North Atlantic temperature variations translate to hydrological shifts in the tropics, with major impacts on regional environmental conditions such as rainfall, river discharge, aeolian dust transport, and ocean margin anoxia.
    Key Points
    Intensity of Indian monsoon is traced with geochemical and grain size analyses of sediments Fluvial versus aeolian sediment input to Arabian Sea mimics DO oscillations During Heinrich events the Indian monsoon weakened distinctly

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors