IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [311418]
Irregular wave validation of a coupling methodology for numerical modelling of near and far field effects of wave energy converter arrays
Fernández, G.F.; Stratigaki, V.; Troch, P. (2019). Irregular wave validation of a coupling methodology for numerical modelling of near and far field effects of wave energy converter arrays. Energies (Basel) 12(3): 538. https://dx.doi.org/10.3390/en12030538
In: Energies (Basel). Molecular Diversity Preservation International (MDPI): Basel. ISSN 1996-1073; e-ISSN 1996-1073, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    numerical modeling; numerical coupling; wave propagation; MILDwave;wave-structure interaction; near field; far field; experimentalvalidation; WECwakes project; wave energy converter arrays

Authors  Top 
  • Fernández, G.F., more
  • Stratigaki, V., more
  • Troch, P., more

Abstract
    Between the Wave Energy Converters (WECs) of a farm, hydrodynamic interactions occur and have an impact on the surrounding wave field, both close to the WECs (" near field" effects) and at large distances from their location (" far field" effects). To simulate this " far field" impact in a fast and accurate way, a generic coupling methodology between hydrodynamic models has been developed by the Coastal Engineering Research Group of Ghent University in Belgium. This coupling methodology has been widely used for regular waves. However, it has not been developed yet for realistic irregular sea states. The objective of this paper is to present a validation of the novel coupling methodology for the test case of irregular waves, which is demonstrated here for coupling between the mild slope wave propagation model, MILDwave, and the ` Boundary Element Method'-based wave-structure interaction solver, NEMOH. MILDwave is used to model WEC farm " far field" effects, while NEMOH is used to model " near field" effects. The results of the MILDwave-NEMOH coupled model are validated against numerical results from NEMOH, and against the WECwakes experimental data for a single WEC, and for WEC arrays of five and nine WECs. Root Mean Square Error (RMSE) between disturbance coefficient (Kd) values in the entire numerical domain (RMSEKd, D) are used for evaluating the performed validation. The RMSEKd, D between results from the MILDwave-NEMOH coupled model and NEMOH is lower than 2.0% for the performed test cases, and between the MILDwave-NEMOH coupled model and the WECwakes experimental data RMSEKd, D remains below 10%. Consequently, the efficiency is demonstrated of the coupling methodology validated here which is used to simulate WEC farm impact on the wave field under the action of irregular waves.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors