IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [355921]
Combined nitrogen‐isotope and cyclostratigraphy evidence for temporal and spatial variability in Frasnian–Famennian environmental change
Percival, L.M.E.; Marynowski, L.; Baudin, F.; Goderis, S.; De Vleeschouwer, D.; Rakocinski, M.; Narkiewicz, K.; Corradini, C.; Da Silva, A.-C.; Claeys, P. (2022). Combined nitrogen‐isotope and cyclostratigraphy evidence for temporal and spatial variability in Frasnian–Famennian environmental change. Geochem. Geophys. Geosyst. 23(5): e2021GC010308. https://dx.doi.org/10.1029/2021gc010308
In: Geochemistry, Geophysics, Geosystems. American Geophysical Union: Washington, DC. ISSN 1525-2027; e-ISSN 1525-2027, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Percival, L.M.E., more
  • Marynowski, L.
  • Baudin, F.
  • Goderis, S., more
  • De Vleeschouwer, D., more
  • Rakocinski, M.
  • Narkiewicz, K.
  • Corradini, C.
  • Da Silva, A.-C., more
  • Claeys, P., more

Abstract
    Widespread marine anoxia triggered by the runoff and recycling of nutrients was a key phenomenon associated with the Frasnian–Famennian (FF) mass extinction. However, the relative importance of global-scale processes versus local influences on site-specific environmental change remains poorly understood. Here, nitrogen-isotope (δ15N) trends are combined with organic-biomarker, phosphorus, and Rock-Eval data in FF sites from the USA (H-32 core, Iowa), Poland (Kowala Quarry), and Belgium (Sinsin). Up-to-date cyclostratigraphic age models for all three sites allow the nature and timing of changes to be precisely compared across the globe. Negative δ15N excursions across the FF interval from the H-32 core and Kowala correlate with geochemical evidence for euxinic, phosphorus-rich, water columns, and possible cyanobacterial activity, suggestive of increased diazotrophic N fixation, potentially coupled with ammonium assimilation at the latter site. By contrast, previously studied sites from Western Canada and South China document enhanced water-column denitrification around the onset of the Upper Kellwasser (UKW) Event, re-emphasizing the geographical heterogeneity in environmental perturbations at that time. Moreover, environmental degradation began >100 kyr earlier in Poland, coeval with a major increase in bioavailable phosphorus supply, than in Iowa, where no such influx is recorded. These regional differences in both the timing and nature of marine perturbations during the FF interval likely resulted from the variable influx of terrigenous nutrients to different marine basins at that time, highlighting the importance of local processes such as terrestrial runoff in driving environmental degradation during times of climate cooling such as the UKW Event.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors