IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [71456]
A spatially explicit, individual-based model to assess the role of estuarine nurseries in the early life history of North Sea herring, Clupea harengus
Maes, J.; Limburg, K.E.; Van de Putte, A.; Ollevier, F.P. (2005). A spatially explicit, individual-based model to assess the role of estuarine nurseries in the early life history of North Sea herring, Clupea harengus. Fish. Oceanogr. 14(1): 17-31. dx.doi.org/10.1111/j.1365-2419.2004.00300.x
In: Fisheries Oceanography. Blackwell Science: Oxford. ISSN 1054-6006; e-ISSN 1365-2419, more
Peer reviewed article  

Available in  Authors | Dataset 

Keywords
    Behaviour > Feeding behaviour
    Behaviour > Migrations
    Developmental stages > Juveniles
    Environmental effects > Temperature effects
    Habitat selection
    Life history
    Metabolism
    Models
    Nursery grounds
    Population functions > Growth
    Water bodies > Coastal waters > Coastal landforms > Coastal inlets > Estuaries
    Clupea harengus Linnaeus, 1758 [WoRMS]
    Belgium, Zeeschelde [Marine Regions]
    Marine/Coastal; Brackish water
Author keywords
    estuarine fish migration; feeding behavior; habitat selection; herring; life-history theory; predation risk

Authors  Top | Dataset 
  • Maes, J., more
  • Limburg, K.E.
  • Van de Putte, A., more
  • Ollevier, F.P., more

Abstract
    Herring (Clupea harengus) enter and remain within North Sea estuaries during well-defined periods of their early life history. The costs and benefits of the migrations between offshore spawning grounds and upper, low-salinity zones of estuarine nurseries are identified using a dynamic state-variable model, in which the fitness of an individual is maximized by selecting the most profitable habitat. Spatio-temporal gradients in temperature, turbidity, food availability and predation risk simulate the environment. We modeled predation as a function of temperature, the optical properties of the ambient water, the time allocation of feeding and the abundance of whiting (Merlangius merlangus). Growth and metabolic costs were assessed using a bioenergetic model. Model runs using real input data for the Scheldt estuary (Belgium, The Netherlands) and the southern North Sea show that estuarine residence results in fitter individuals through a considerable increase in survival probability of age-0 fish. Young herring pay for their migration into safer estuarine water by foregoing growth opportunities at sea. We suggest that temperature and, in particular, the time lag between estuarine and seawater temperatures, acts as a basic cue for herring to navigate in the heterogeneous space between the offshore spawning grounds at sea and the oligohaline nursery zone in estuaries.

Dataset
  • Monthly surface water temperatures in the open North Sea and upper Scheldt estuary, more

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors | Dataset