IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Paleoclimate and paleoceanography over the past 20,000 yr in the Mediterranean Sea Basins as indicated by sediment elemental proxies
Martinez-Ruiz, F.; Kastner, M.; Gallego-Torres, D.; Rodrigo-Gamiz, M.; Nieto-Moreno, V.; Ortega-Huertas, M. (2015). Paleoclimate and paleoceanography over the past 20,000 yr in the Mediterranean Sea Basins as indicated by sediment elemental proxies. Quat. Sci. Rev. 107: 25–46. dx.doi.org/10.1016/j.quascirev.2014.09.018
In: Quaternary Science Reviews. Pergamon Press: Oxford; New York. ISSN 0277-3791; e-ISSN 1873-457X, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Elemental ratios; Mediterranean basins; Marine records; Terrigenous input; Redox proxies; Paleoproductivity; Paleoclimate; Paleoceanographic conditions

Authors  Top 
  • Martinez-Ruiz, F.
  • Kastner, M.
  • Gallego-Torres, D.
  • Rodrigo-Gamiz, M., more
  • Nieto-Moreno, V.
  • Ortega-Huertas, M.

Abstract
    Marine sediments record paleoenvironmental changes over time through variations in major and trace element concentrations. The main objective of this paper is to review such changes in the Mediterranean Sea basins over the last 20 ka, using the inorganic chemistry and mineralogy of marine sediment records. Elemental ratio proxies that are mostly used are discussed, and the uncertainties involved in using them for paleoclimate and paleoceanographic reconstructions are evaluated. The focus on the Mediterranean region is based on the sensitivity of this region to global climate changes due to its semi-enclosed nature. The elemental ratios that have been particularly useful for reconstructing terrigenous inputs into the Mediterranean have been Ti/Al and Zr/Al ratios as proxies for eolian dust input, and Mg/Al, K/Al and Rb/Al ratios as proxies for fluvial input. Redox sensitive elements (e.g., U, Mo, V, Co, Ni, Cr) have provided reliable reconstructions of oxygen conditions at the time of deposition. Some of these elements are also particularly susceptible to post-depositional remobilization and record diagenetic processes instead of the original environmental signatures. Regarding productivity fluctuations, most of the paleoproductivity reconstructions are based on the abundance of barite and Ba excess algorithms. The biogeochemistry of Ba is, however, not fully understood and mechanisms for barite precipitation in the water column are not yet known. Two case studies are presented: the eastern Mediterranean sapropel S1 (deposited between 10.8 and 6.1 cal ka BP) and the westernmost Mediterranean paleoclimate record over the last 20 ka.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors