IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Coastal lake sediments reveal 5500 years of tsunami history in south central Chile
Kempf, P.; Moernaut, J.; Van Daele, M.; Vandoorne, W.; Pino, M.; Urrutia, R.; De Batist, M. (2017). Coastal lake sediments reveal 5500 years of tsunami history in south central Chile. Quat. Sci. Rev. 161: 99-116. https://dx.doi.org/10.1016/j.quascirev.2017.02.018
In: Quaternary Science Reviews. Pergamon Press: Oxford; New York. ISSN 0277-3791; e-ISSN 1873-457X, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Holocene; Natural hazards; Tsunami; Sea level changes; South America;Chile; Sedimentology; Lakes; Lagoons & swamps; Age-depth modelling

Authors  Top 
  • Pino, M.
  • Urrutia, R.
  • De Batist, M., more

Abstract
    We present an exceptionally long and continuous coastal lacustrine record of ∼5500 years from Lake Huelde on the west coast of Chiloé Island in south central Chile. The study area is located within the rupture zone of the giant 1960 CE Great Chilean Earthquake (MW 9.5). The subsequent earthquake-induced tsunami inundated Lake Huelde and deposited mud rip-up clasts, massive sand and a mud cap in the lake. Long sediment cores from 8 core sites within Lake Huelde reveal 16 additional sandy layers in the 5500 year long record. The sandy layers share sedimentological similarities with the deposit of the 1960 CE tsunami and other coastal lake tsunami deposits elsewhere. On the basis of general and site-specific criteria we interpret the sandy layers as tsunami deposits. Age-control is provided by four different methods, 1) 210Pb-dating, 2) the identification of the 137Cs-peak, 3) an infrared stimulated luminescence (IRSL) date and 4) 22 radiocarbon dates. The ages of each tsunami deposit are modelled using the Bayesian statistic tools of OxCal and Bacon. The record from Lake Huelde matches the 8 regionally known tsunami deposits from documented history and geological evidence from the last ∼2000 years without over- or underrepresentation. We extend the existing tsunami history by 9 tsunami deposits. We discuss the advantages and disadvantages of various sedimentary environments for tsunami deposition and preservation, e.g. we find that Lake Huelde is 2–3 times less sensitive to relative sea-level change in comparison to coastal marshes in the same region.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors