IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

A comparison of Late Quaternary organic proxy-based paleotemperature records of the Central Sea of Okhotsk
Lattaud, J.; Lo, L.; Huang, J.-J.; Chou, Y.-M.; Gorbarenko, S.A.; Sinninghe Damsté, J.S; Schouten, S. (2018). A comparison of Late Quaternary organic proxy-based paleotemperature records of the Central Sea of Okhotsk. Paleoceanography and Paleoclimatology 33(7): 732-744. https://dx.doi.org/10.1029/2018pa003388

Additional data:
In: Paleoceanography and Paleoclimatology. American Geophysical Union: Washington DC. ISSN 2572-4525; e-ISSN 2572-4525, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Lattaud, J., more
  • Lo, L.
  • Huang, J.-J.
  • Chou, Y.-M.
  • Gorbarenko, S.A.
  • Sinninghe Damsté, J.S, more
  • Schouten, S., more

Abstract
    The long‐chain diol index (LDI) is a new organic sea surface temperature (SST) proxy based on the distribution of long‐chain diols. It has been applied in several environments but not yet in subpolar regions. Here we tested the LDI on surface sediments and a sediment core from the Sea of Okhotsk, which is the southernmost seasonal sea ice‐covered region in the Northern Hemisphere, and compared it with other organic temperature proxies, that is, Uk'37 and TEXL86. In the surface sediments, the LDI is correlated with autumn SST, similar to the Uk'37 but different from the TEXL86 that correlates best with summer sea subsurface temperature. Remarkably, the obtained local LDI calibration was significantly different from the global core‐top calibration. We used the local LDI calibration to reconstruct past SST changes in the central Sea of Okhotsk. The LDI‐SST record shows low glacial (Marine Isotope Stage, MIS 2, 4, and 6) and high interglacial (MIS 1 and MIS 5) temperatures and follows the same pattern as the Uk'37‐SST and a previously published TEXL86 temperature record. Similar to the modern situation, the reconstructed temperatures during the interglacials likely reflect different seasons, that is, summer for the TEXL86 and autumn for Uk'37 and LDI. During glacials, the reconstructed temperatures of all three proxies are similar to each other, likely reflecting summer temperatures as this was the only season free of sea ice. Our results suggest that the LDI is a suitable proxy to reconstruct subpolar seawater temperatures.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors