When traits affecting species interactions evolve rapidly, ecological dynamics can be altered while they occur. These eco-evolutionary dynamics have been documented repeatedly in laboratory and mesocosm experiments. We show here that they are also important for understanding community functioning in a natural ecosystem. Daphnia is a major planktonic consumer influencing seasonal plankton dynamics in many lakes. It is also sensitive to succession in its phytoplankton food, from edible algae in spring to relatively inedible cyanobacteria in summer. We show for Daphnia mendotae in Oneida Lake, New York, United States, that within-year ecological change in phytoplankton (from spring diatoms, cryptophytes and greens to summer cyanobacteria) resulted in consumers evolving increasing tolerance to cyanobacteria over time. This evolution fed back on ecological seasonal changes in population abundance of this major phytoplankton consumer. Oneida Lake is typical of mesotrophic lakes broadly, suggesting that eco-evolutionary consumer-resource dynamics is probably common.
All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy