IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

A first comprehensive baseline of hydrocarbon pollution in Gulf of Mexico fishes
Pulster, E.L.; Gracia, A.; Armenteros, M.; Toro-Farmer, G.; Snyder, S.M.; Carr, B.E.; Schwaab, M.R.; Nicholson, T.J.; Mrowicki, J.; Murawski, S.A. (2020). A first comprehensive baseline of hydrocarbon pollution in Gulf of Mexico fishes. NPG Scientific Reports 10(1): 14 pp. https://dx.doi.org/10.1038/s41598-020-62944-6
In: Scientific Reports (Nature Publishing Group). Nature Publishing Group: London. ISSN 2045-2322; e-ISSN 2045-2322, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Pulster, E.L.
  • Gracia, A.
  • Armenteros, M., more
  • Toro-Farmer, G.
  • Snyder, S.M.
  • Carr, B.E.
  • Schwaab, M.R.
  • Nicholson, T.J.
  • Mrowicki, J.
  • Murawski, S.A.

Abstract
    Despite over seven decades of production and hundreds of oil spills per year, there were no comprehensive baselines for petroleum contamination in the Gulf of Mexico (GoM) prior to this study. Subsequent to the 2010 Deepwater Horizon (DWH) spill, we implemented Gulf-wide fish surveys extending over seven years (2011–2018). A total of 2,503 fishes, comprised of 91 species, were sampled from 359 locations and evaluated for biliary polycyclic aromatic hydrocarbon (PAH) concentrations. The northern GoM had significantly higher total biliary PAH concentrations than the West Florida Shelf, and coastal regions off Mexico and Cuba. The highest concentrations of biliary PAH metabolites occurred in Yellowfin Tuna (Thunnus albacares), Golden Tilefish (Lopholatilus chamaeleonticeps), and Red Drum (Sciaenops ocellatus). Conversely, biliary PAH concentrations were relatively low for most other species including economically important snappers and groupers. While oil contamination in most demersal species in the north central GoM declined in the first few years following DWH, more recent increases in exposure to PAHs in some species suggest a complex interaction between multiple input sources and possible re-suspension or bioturbation of oil-contaminated sediments. This study provides the most comprehensive baselines of PAH exposure in fishes ever conducted for a large marine ecosystem.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors