IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Recent geospatial dynamics of Terceira (Azores, Portugal) and the theoretical implications for the biogeography of active volcanic islands
Rijsdijk, K.F.; Buijs, S.; Quartau, R.; Aguilée, R.; Norder, S.J.; Ávila, S.P.; Teixeira de Medeiros, S.M.; Nunes, J.C.C.; Elias, R.B.; Melo, C.S.; Stocchi, P.; Koene, E.F.M.; Seijmonsbergen, A.C.; de Boer, W.M.; Borges, P.A.V. (2020). Recent geospatial dynamics of Terceira (Azores, Portugal) and the theoretical implications for the biogeography of active volcanic islands. Frontiers of Biogeography 12(3): e45003. https://doi.org/10.21425/f5fbg45003

Additional data:
In: Frontiers of Biogeography. University of California. e-ISSN 1948-6596, more

Available in  Authors 

Author keywords
    Azores; equilibrium theory; general dynamic theory; glacial sensitive theory; island biogeography; lava deltas; sea level change; species pump theory; volcanic oceanic islands

Authors  Top 
  • Rijsdijk, K.F.
  • Buijs, S.
  • Quartau, R.
  • Aguilée, R.
  • Norder, S.J.
  • Ávila, S.P.
  • Teixeira de Medeiros, S.M.
  • Nunes, J.C.C.
  • Elias, R.B.
  • Melo, C.S.
  • Stocchi, P., more
  • Koene, E.F.M.
  • Seijmonsbergen, A.C.
  • de Boer, W.M.
  • Borges, P.A.V.

Abstract
    Ongoing work shows that species richness patterns on volcanic oceanic islands are shaped by surface area changes driven by longer time scale (>1 ka) geological processes and natural sea level fluctuations. A key question is: what are the rates and magnitudes of the forces driving spatial changes on volcanic oceanic islands which in turn affect evolutionary and biogeographic processes? We quantified the rates of surface-area changes of a whole island resulting from both volcanogenic flows and sea level change over the last glacial-interglacial (GI) cycle (120 ka) for the volcanically active island of Terceira, (Azores, Macaronesia, Portugal). Volcanogenic activity led to incidental but long-lasting surface area expansions by the formation of a new volcanic cone and lava-deltas, whereas sea level changes led to both contractions and expansions of area. The total surface area of Terceira decreased by as much as 24% per time step due to changing sea levels and increased by 37% per time step due to volcanism per time step of 10 ka. However, while sea levels nearly continuously changed the total surface area, volcanic activity only impacted total surface area during two time steps over the past 120 ka. The surface area of the coastal and lowland region (here defined as area <300 m) was affected by sea level change (average change of 11% / 10 ka for 120–0 ka) and intra-volcanic change (average change of 17% / 10 ka for 120–0 ka). We discuss the biogeographic implications of the quantified dynamics, and we argue that surface area change is mainly driven by volcanic processes in the early stages of the island’s life cycle, while during the later stages, area change becomes increasingly affected by sea level dynamics. Both environmental processes may therefore affect biota differently during the life cycle of volcanic oceanic islands.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors