IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Global ecomorphological restructuring of dominant marine reptiles prior to the Cretaceous–Palaeogene mass extinction
MacLaren, J.A.; Bennion, R.F.; Bardet, N.; Fischer, V. (2022). Global ecomorphological restructuring of dominant marine reptiles prior to the Cretaceous–Palaeogene mass extinction. Proc. - Royal Soc., Biol. Sci. 289(1975): 20220585. https://dx.doi.org/10.1098/rspb.2022.0585

Additional data:
In: Proceedings of the Royal Society of London. Series B. The Royal Society: London. ISSN 0962-8452; e-ISSN 1471-2954, more
Peer reviewed article  

Available in  Authors 

Keywords
    Mosasauridae
    Marine/Coastal
Author keywords
    morphometrics, provincialism, megapredator, ecomorphology, Cretaceous

Authors  Top 
  • MacLaren, J.A., more
  • Bennion, R.F., more
  • Bardet, N.
  • Fischer, V., more

Abstract
    Mosasaurid squamates were the dominant amniote predators in marine ecosystems during most of the Late Cretaceous. Here, we use a suite of biomechanically rooted, functionally descriptive ratios in a framework adapted from population ecology to investigate how the morphofunctional disparity of mosasaurids evolved prior to the Cretaceous–Palaeogene (K/Pg) mass extinction. Our results suggest that taxonomic turnover in mosasaurid community composition from Campanian to Maastrichtian is reflected by a notable global increase in morphofunctional disparity, especially driving the North American record. Ecomorphospace occupation becomes polarized during the late Maastrichtian, with morphofunctional disparity plateauing in the Southern Hemisphere and decreasing in the Northern Hemisphere. We show that these changes are not strongly associated with mosasaurid size, but rather with the functional capacities of their skulls. Our novel approach indicates that mosasaurid morphofunctional disparity was in decline in multiple provincial communities before the K/Pg mass extinction, highlighting region-specific patterns of disparity evolution and the importance of assessing vertebrate extinctions both globally and locally. Ecomorphological differentiation in mosasaurid communities, coupled with declines in other formerly abundant marine reptile groups, indicates widespread restructuring of higher trophic levels in marine food webs was well underway when the K/Pg mass extinction took place.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors