IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Offshore MTDC transmission expansion for renewable energy scale-up in Korean Power System: DC Highway
Lee, J.; Lee, D.; Lee, J.; Yoon, M.; Jang, G. (2023). Offshore MTDC transmission expansion for renewable energy scale-up in Korean Power System: DC Highway. Journal of Electrical Engineering & Technology 18(4): 2483-2493. https://dx.doi.org/10.1007/s42835-023-01513-z
In: Journal of Electrical Engineering & Technology. Springer Singapore: Singapore. ISSN 1975-0102; e-ISSN 2093-7423, more
Related to:
Lee, J.; Lee, D.; Lee, J.; Yoon, M.; Jang, G. (2023). Correction: Offshore MTDC Transmission Expansion for Renewable Energy Scale-up in Korean Power System: DC Highway. Journal of Electrical Engineering & Technology 18(5): 3985-3985. https://dx.doi.org/10.1007/s42835-023-01552-6, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    HVDC; Multi-terminal DC; Renewable energy; Renewable integration; Powersystem analysis

Authors  Top 
  • Lee, J.
  • Lee, D., more
  • Lee, J.
  • Yoon, M.
  • Jang, G.

Abstract
    In this study, we analyzed the impact of multi-terminal direct current (MTDC) system on the integration of renewable energy resources into the Korean power system. Due to the large-scale renewable energy plants planned to be integrated into the power system, line congestion is expected in the southern part of power system. Given the difficulty in constructing AC transmission lines due to social conflicts, we proposed an alternative solution using an offshore multi-terminal DC offshore transmission system. Firstly, we calculate the effective renewable energy plant generation capacity based on annual wind and solar radiation data. Next, we conduct PSS/E simulations to minimize future line congestion in the Korean power grid. The offshore terminal is designed to transfer the power generated in southern Korea and is verified using different terminal rating cases. The simulation result, including contingency analysis, demonstrate that transferring 80% of the generated renewable power achieves the best line flow condition. Therefore, the MTDC system is a possible candidate for integrating future renewable energy systems into the Korean power grid.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors