IMIS - Marine Research Groups | Compendium Coast and Sea

IMIS - Marine Research Groups

[ report an error in this record ]basket (0): add | show Print this page

Highly structured populations of copepods at risk to deep‐sea mining: Integration of genomic data with demogenetic and biophysical modelling
Diaz-Recio Lorenzo, C.; Tran Lu Y, A.; Brunner, O.; Arbizu, P.M.; Jollivet, D.; Laurent, S.; Gollner, S. (2024). Highly structured populations of copepods at risk to deep‐sea mining: Integration of genomic data with demogenetic and biophysical modelling. Mol. Ecol. 33(9): e17340. https://dx.doi.org/10.1111/mec.17340
In: Molecular Ecology. Blackwell: Oxford. ISSN 0962-1083; e-ISSN 1365-294X, more
Peer reviewed article  

Available in  Authors 

Author keywords
    connectivity; copepods; deep-sea mining; demography; hydrothermal vents; larval dispersal modelling

Authors  Top 
  • Diaz-Recio Lorenzo, C., more
  • Tran Lu Y, A.
  • Brunner, O.
  • Arbizu, P.M.
  • Jollivet, D.
  • Laurent, S.
  • Gollner, S., more

Abstract
    Copepoda is the most abundant taxon in deep-sea hydrothermal vents, where hard substrate is available. Despite the increasing interest in seafloor massive sulphides exploitation, there have been no population genomic studies conducted on vent meiofauna, which are known to contribute over 50% to metazoan biodiversity at vents. To bridge this knowledge gap, restriction-site-associated DNA sequencing, specifically 2b-RADseq, was used to retrieve thousands of genome-wide single-nucleotide polymorphisms (SNPs) from abundant populations of the vent-obligate copepod Stygiopontius lauensis from the Lau Basin. SNPs were used to investigate population structure, demographic histories and genotype–environment associations at a basin scale. Genetic analyses also helped to evaluate the suitability of tailored larval dispersal models and the parameterization of life-history traits that better fit the population patterns observed in the genomic dataset for the target organism. Highly structured populations were observed on both spatial and temporal scales, with divergence of populations between the north, mid, and south of the basin estimated to have occurred after the creation of the major transform fault dividing the Australian and the Niuafo'ou tectonic plate (350 kya), with relatively recent secondary contact events (<20 kya). Larval dispersal models were able to predict the high levels of structure and the highly asymmetric northward low-level gene flow observed in the genomic data. These results differ from most studies conducted on megafauna in the region, elucidating the need to incorporate smaller size when considering site prospecting for deep-sea exploitation of seafloor massive sulphides, and the creation of area-based management tools to protect areas at risk of local extinction, should mining occur.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors