IMIS - Marine Onderzoeksgroepen | Compendium Kust en Zee

IMIS - Marine Onderzoeksgroepen

[ meld een fout in dit record ]mandje (1): toevoegen | toon Print deze pagina

one publication added to basket [361817]
Are ecosystem engineering traits fixed or flexible: A study on clonal expansion strategies in co-occurring dune grasses
Lammers, C.; van de Ven, C.N.; van der Heide, T.; Reijers, V.C (2023). Are ecosystem engineering traits fixed or flexible: A study on clonal expansion strategies in co-occurring dune grasses. Ecosystems 26: 1195-1208. https://dx.doi.org/10.1007/s10021-023-00826-4

Bijhorende data:
In: Ecosystems. Springer: New York, NY. ISSN 1432-9840; e-ISSN 1435-0629, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoorden
    Ammophila arenaria (L.) Link [WoRMS]; Elytrigia juncea
    Marien/Kust
Author keywords
    biogeomorphology; coastal dunes; clonal expansion; Ammophila arenaria; Elytrigia juncea; ecosystem engineer; interspecific variation; intraspecific variation

Auteurs  Top 
  • Lammers, C., meer
  • van de Ven, C.N., meer
  • van der Heide, T., meer
  • Reijers, V.C, meer

Abstract

    Many vegetated coastal ecosystems are formed through ecosystem engineering by clonal vegetation. Recent work highlights that the spatial shoot organization of the vegetation determines local sediment accretion and subsequently emerging landscape morphology. While this key engineering trait has been found to differ between species and prevailing environmental conditions, it remains unknown how the interplay of both factors drive shoot organization and therefore landscape morphology. Here, we compared the spatial shoot organization of young, clonally expanding plants of thetwo dominant European dune grass species: sand couch ( Elytrigia juncea) and marram grass (Ammophila arenaria) across a range of coastal dune environments (from Denmark to France). Our results reveal that, on average, sand couch deployed a more dispersed shoot organization than marram grass, which has a patchy (Lévy-like) organization. Whereas sand couch exhibited the same expansion strategy independent of environmental conditions, marram grass demonstrated a large intraspecific variation which correlated to soil organic matter, temperature and grain size. Shoot patterns ranged from a clumped organization correlating to relatively high soil organic matter contents, temperature and small grain sizes, to a patchy configuration with intermediate conditions, and a dispersed organization with low soil organic matter, temperature and large grain size. We conclude that marram grass is flexible in adjusting its engineering capacity in response to environmental conditions, while sand couch instead follows a fixed expansion strategy, illustrating that shoot organization results from the interaction of both species-specific and environmental-specific trait expression.


Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs