IMIS - Marine Onderzoeksgroepen | Compendium Kust en Zee

IMIS - Marine Onderzoeksgroepen

[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Physiological control of bioluminescence in a deep-sea planktonic worm, Tomopteris helgolandica
Gouveneaux, A.; Mallefet, J. (2013). Physiological control of bioluminescence in a deep-sea planktonic worm, Tomopteris helgolandica. J. Exp. Biol. 216(22): 4285-4289. dx.doi.org/10.1242/jeb.090852
In: The Journal of Experimental Biology. Cambridge University Press: London. ISSN 0022-0949; e-ISSN 1477-9145, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoorden
    Tomopteridae Grube, 1850 [WoRMS]
    Marien/Kust
Author keywords
    Tomopteridae; yellow light; annelid; cholinergic control; nervouscontrol; plankton

Auteurs  Top 
  • Gouveneaux, A., meer
  • Mallefet, J., meer

Abstract
    Tomopteris helgolandica Greeff 1879 (Tomopteridae) is a transparent holoplanktonic polychaete that can emit a bright light. In this study, we investigated the emission pattern and control of this deep-sea worm's luminescence. Potassium chloride depolarisation applied on anaesthetized specimens triggered a maximal yellow light emission from specific parapodial sites, suggesting that a nervous control pathway was involved. Pharmacological screening revealed a sensitivity to carbachol, which was confirmed by a dose–light response associated with a change in the light emission pattern, where physiological carbachol concentrations induced flashes and higher concentrations induced glows. The light response induced by its hydrolysable agonist, acetylcholine, was significantly weaker but was facilitated by eserine pretreatment. In addition, a specific inhibitory effect of tubocurarine was observed on carbachol-induced emission. Lastly, KCl- and carbachol-induced light responses were significantly reduced when preparations were pre-incubated in Ca2+-free artificial seawater or in different calcium channel blockers (verapamil, diltiazem) and calmodulin inhibitor (trifluoperazine) solutions. All of these results strongly suggest that T. helgolandica produces its light flashes via activation of nicotinic cholinergic receptors and a calcium-dependent intracellular mechanism involving L-type calcium channels.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs