IMIS - Marine Onderzoeksgroepen | Compendium Kust en Zee

IMIS - Marine Onderzoeksgroepen

[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Structure of the archaeal Pab87 peptidase reveals a novel self-compartmentalizing protease family
Delfosse, V.; Girard, E.; Birck, C.; Delmarcelle, M.; Delarue, M.; Poch, O.; Schultz, P.; Mayer, C. (2009). Structure of the archaeal Pab87 peptidase reveals a novel self-compartmentalizing protease family. PLoS One 4(3): e4712. dx.doi.org/10.1371/journal.pone.0004712
In: PLoS One. Public Library of Science: San Francisco. ISSN 1932-6203; e-ISSN 1932-6203, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoord
    Marien/Kust

Auteurs  Top 
  • Delfosse, V.
  • Girard, E.
  • Birck, C.
  • Delmarcelle, M., meer
  • Delarue, M.
  • Poch, O.
  • Schultz, P.
  • Mayer, C.

Abstract
    Self-compartmentalizing proteases orchestrate protein turnover through an original architecture characterized by a central catalytic chamber. Here we report the first structure of an archaeal member of a new self-compartmentalizing protease family forming a cubic-shaped octamer with D4 symmetry and referred to as CubicO. We solved the structure of the Pyrococcus abyssi Pab87 protein at 2.2 Å resolution using the anomalous signal of the high-phasing-power lanthanide derivative Lu-HPDO3A. A 20 Å wide channel runs through this supramolecular assembly of 0.4 MDa, giving access to a 60 Å wide central chamber holding the eight active sites. Surprisingly, activity assays revealed that Pab87 degrades specifically d-amino acid containing peptides, which have never been observed in archaea. Genomic context of the Pab87 gene showed that it is surrounded by genes involved in the amino acid/peptide transport or metabolism. We propose that CubicO proteases are involved in the processing of d-peptides from environmental origins.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs