IMIS - Marine Onderzoeksgroepen | Compendium Kust en Zee

IMIS - Marine Onderzoeksgroepen

[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Continental and sea ice iron sources fertilize the Southern Ocean in synergy
Person, R.; Vancoppenolle, M.; Aumont, O.; Malsang, M. (2021). Continental and sea ice iron sources fertilize the Southern Ocean in synergy. Geophys. Res. Lett. 48(23): e2021GL094761. https://dx.doi.org/10.1029/2021GL094761
In: Geophysical Research Letters. American Geophysical Union: Washington. ISSN 0094-8276; e-ISSN 1944-8007, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoord
    Marien/Kust
Author keywords
    iron; cryosphere; Southern Ocean; fertilization; biological carbon pump; modeling

Auteurs  Top 
  • Person, R.
  • Vancoppenolle, M., meer
  • Aumont, O.
  • Malsang, M.

Abstract
    Iron release from melting continental and sea ice is deemed important for phytoplankton, the growth of which is iron-limited in the Southern Ocean. Both sources are generally considered separately, yet their effects on the biological carbon pump could interact. Using a global ocean-sea-ice-biogeochemical model with a representation of both continental and sea ice iron sources, we find them to have an overall additive effect on phytoplankton activity, increasing carbon export by +13.9% of the Southern Ocean total, with continental ice contributing +4.5% and sea ice +8.0%. The +1.4% residual is due to a coupled fertilization effect: When the iron source from continental ice is activated, iron in sea ice increases by 16%, so does iron transport toward low production areas. Overall, this increases phytoplankton activity: Fertilization is more efficient where sea ice melts than at locations of initial iron release by continental ice.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs