IMIS - Marine Onderzoeksgroepen | Compendium Kust en Zee

IMIS - Marine Onderzoeksgroepen

[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Numerical modeling of vegetation-induced dissipation using an extended mild-slope equation
Cao, H.; Feng, W.; Hu, Z.; Suzuki, T.; Stive, M.J.F. (2015). Numerical modeling of vegetation-induced dissipation using an extended mild-slope equation. Ocean Eng. 110(A): 258-269. https://dx.doi.org/10.1016/j.oceaneng.2015.09.057
In: Ocean Engineering. Pergamon: Elmsford. ISSN 0029-8018; e-ISSN 1873-5258, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoorden
    Diffraction
    Energy transfer > Energy dissipation > Wave dissipation
    Vegetation
Author keywords
    Extended mild slope equation; Numerical modeling; Diffraction

Auteurs  Top 
  • Cao, H.
  • Feng, W.
  • Hu, Z., meer

Abstract
    This paper presents an incorporation of vegetation-induced wave dissipation in a planar numerical wave propagation model based on the extended mild-slope equation (EMSE). The implementation was incorporated in a purely mathematical method in the light of current theoretical studies. To examine the performance of the phase-resolving model, a comprehensive comparison with phase-averaged SWAN is made to test and validate the implementation. Moreover, new in-situ measurements in a mangrove forest are presented aiming to test the wave energy damping by vegetation using the observed wave spectra. From our validation results it can be concluded that wave dissipation due to vegetation is equally well reproduced in this model. It is found that the wave parameters (wave height and period) and vegetation parameters (plant width, height and density) are all influencing factors. An interesting finding is that relatively high-frequency waves are more dissipated than low frequency waves, especially for larger wave heights. In this study, we found that diffraction is of great significance in wave propagation over inhomogeneously distributed vegetation. Theoretically, the phase resolving EMSE represents the physical process of diffraction better than the phase-averaged model SWAN.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs