Astronomical insolation forcing is well established as the underlying metronome of Quaternary ice ages and Cenozoic climate changes. Yet its effects on earlier eras (Mesozoic, Palaeozoic and pre-Cambrian) are less understood. In this Review, we explore how cyclostratigraphy can help to distinguish climate modes over the pre-Cenozoic era and aid our understanding of climate responses to astronomical forcing over geological time. The growing uncertainties with geologic age mean that pre-Cenozoic astronomical solutions cannot be used as tuning targets. However, they can be used as metronomes to identify the pacing of distinct climate states. Throughout the pre-Cenozoic, global average temperature differences between climate states were even more extreme (5–32 °C) than in the Cenozoic (14–27 °C), and these, combined with an evolving biosphere and changing plate tectonics, led to distinct Earth-system responses to astronomical forcing. The late Palaeozoic icehouse, for example, is characterized by a pronounced response to eccentricity, caused by nonlinear cryosphere and carbon-cycle behaviour. By contrast, the Devonian warmhouse and the Late Cretaceous hothouse featured recurrent episodes of marine anoxia that may have been paced by astronomical forcing. Formally defining 405,000-year eccentricity cycles as chronostratigraphic units (astrochronozones) throughout the Phanerozoic eon will enable a more comprehensive understanding of how astronomical forcing has shaped Earth’s climate over geologic time.
Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid