IMIS - Marine Onderzoeksgroepen | Compendium Kust en Zee

IMIS - Marine Onderzoeksgroepen

[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Exploring Wave–Vegetation Interaction at Stem Scale: Analysis of the Coupled Flow–Structure Interactions Using the SPH-Based DualSPHysics Code and the FEA Module of Chrono
El Rahi, J.; Martinez-Estevez, I.; Almeida Reis, R.; Tagliafierro, B.; Dominguez, J.M.; Crespo, A.J.C.; Stratigaki, V.; Suzuki, T.; Troch, P. (2024). Exploring Wave–Vegetation Interaction at Stem Scale: Analysis of the Coupled Flow–Structure Interactions Using the SPH-Based DualSPHysics Code and the FEA Module of Chrono. J. Mar. Sci. Eng. 12(7): 1120. https://dx.doi.org/10.3390/jmse12071120
In: Journal of Marine Science and Engineering. MDPI: Basel. ISSN 2077-1312; e-ISSN 2077-1312, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoorden
    Coastal protection > Coastal safety against extreme storms > Soft coastal defences
    Numerical modelling
Author keywords
    wave–vegetation interaction; flexible structure; fluid–elastic structure interaction; SPH-FEA
    coupling; DualSPHysics; Project Chrono

Project Top | Auteurs 
  • PhD - 'Building with Nature' kustbescherming, meer

Auteurs  Top 
  • El Rahi, J., meer
  • Martinez-Estevez, I.
  • Almeida Reis, R.
  • Tagliafierro, B.
  • Dominguez, J.M.
  • Crespo, A.J.C.

Abstract
    Aquatic vegetation in the littoral zone plays a crucial role in attenuating wave energy and protecting coastal communities from hazardous events. This study contributes to the development of numerical models aimed at designing nature-based coastal defense systems. Specifically, a novel numerical application for simulating wave–vegetation interactions at the stem scale is presented. The numerical model employed, DualSPHysics, couples the meshfree Smoothed Particle Hydrodynamics (SPH) fluid solver with a structural solver to accurately capture the two-way interactions between waves and flexible vegetation. The proposed numerical model is validated against experimental data involving a submerged rubber cylinder representing an individual vegetation stem, subjected to regular waves. The results demonstrate excellent agreement in hydrodynamics, force transfer, and the swaying motion of the flexible cylinder. Importantly, the approach explicitly captures energy transfer between the fluid environment and the individual stem. The numerical results indicate persistent turbulent flow along the vegetation stem, even when its swaying speed matches that of the surrounding environment. This reveals the presence of vortex shedding and energy dissipation, which challenges the concept of passive swaying in flexible aquatic vegetation.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs